

Technical documentation

Collaborating partners
Aspaym Castilla y Léon

C/ Treviño 74
47008 – Valladolid
Spain
www.aspaymcyl.org
info@aspaymcyl.org

Center IRIS Ljubljana

Langusova ulica 8
1000 Ljubljana
Slovenia
www.center-iris.si
info@center-iris.si

Centre pour le développement des compétences relatives à

la vue

17a, route de Longwy
L-8080 Bertrange
www.cc-cdv.lu
info@cc-cdv.lu

Lega del filo d’oro

Sede centrale di Osimo Via Montecerno, 1
60027 Osimo (AN)
Italy
www.legadelfilodoro.it
info@legadelfilodoro.it

http://www.aspaymcyl.org/
mailto:info@aspaymcyl.org
http://www.center-iris.si/
mailto:info@center-iris.si
http://www.cc-cdv.lu/
mailto:info@cc-cdv.lu
http://www.legadelfilodoro.it/
mailto:info@legadelfilodoro.it

 1 | P a g e

Introduction
In this document, we explain how to set up the OPEYE 2 development environment and
detail the structure of the project, providing insight into the methods and technologies
utilized throughout the development process.

Resources used

This project made use of some pre-existing software. These key components include
Unreal Engine 4.27.2 as the primary development platform, the TobiiEyeTracker SDK for
eye-tracking capabilities, and the combination of TCP Socket Plugin and EasyXML Parser
for seamless communication with the OpenGaze API. These resources have been
instrumental in crafting the OPEYE 2 application, enabling its versatility and adaptability
to various eye-tracking solutions.

P a g e | 2

Setup
This guide assumes that you have already set up Tobii Experience and/or GazePoint and
performed the necessary calibration process. In case these steps have not been
performed yet, you can read up on them in our User Documentation.

To get started with the project clone the project from the github repository using the
following command:

git clone https://github.com/Opeye-erasmus/OPEYE2

The basic setup requires the installation of Unreal Engine 4. To do this, download the
Epic Launcher from the following link: https://www.unrealengine.com/en-US/download

Install and launch the Epic Launcher. Inside Epic Launcher, select “Unreal Engine” on the
left side then click “Library” at the top and finally click on the “+” button next to ENGINE
VERSION. Select version 4.27.2 and install it.

If you want to use the TobiiExperience plugin you need to apply to their SDK via their
download form using this link: https://developer.tobii.com/software-downloads/. Once
you have access to the plugin, download it and place it inside the plugin folder:

o3-communication-application\Opeye2\Plugins\TobiiEyetracking

Two more free plugins are needed for the setup to be completed. The two plugins are
“TCP Socket Plugin” (https://www.unrealengine.com/marketplace/en-US/product/tcp-
socket-plugin) and “EasyXML Parser” (https://unrealengine.com/marketplace/en-
US/product/easyxmlparser). Since they are hosted on the UE4 marketplace, they should
be downloaded automatically when you open the project.

Finally, after installing all the required elements, you can launch the project using one of
two methods. Either navigate to the path where you used git clone and open the file
o3-communication-application\Opeye2\Opeye2.uproject using Unreal Engine.
Alternatively, you can launch Unreal Engine 4.27.2 from inside the Epic Launcher and
browse to the location of the project to open it.

https://github.com/Opeye-erasmus/OPEYE2
https://github.com/Opeye-erasmus/OPEYE2
https://github.com/Opeye-erasmus/OPEYE2
https://github.com/Opeye-erasmus/OPEYE2
https://github.com/Opeye-erasmus/OPEYE2
https://github.com/Opeye-erasmus/OPEYE2
https://github.com/Opeye-erasmus/OPEYE2
https://github.com/Opeye-erasmus/OPEYE2
https://www.unrealengine.com/en-US/download
https://www.unrealengine.com/en-US/download
https://developer.tobii.com/software-downloads/
https://developer.tobii.com/software-downloads/
https://www.unrealengine.com/marketplace/en-US/product/tcp-socket-plugin
https://www.unrealengine.com/marketplace/en-US/product/tcp-socket-plugin
https://unrealengine.com/marketplace/en-US/product/easyxmlparser?lang=en-US
https://unrealengine.com/marketplace/en-US/product/easyxmlparser?lang=en-US

 3 | P a g e

Software architecture
OPEYE 2 was developed in Unreal Engine 4. The whole code architecture is based on
Unreal Engine 4’s Blueprint system. Unreal Engine 4 Blueprints is a powerful visual
scripting system that streamlines the development process by enabling rapid
prototyping and iteration of game mechanics. Blueprints facilitate collaboration
between designers and programmers, as it provides a clear, visual representation of
game logic that is easy to understand even for those who were not initially part of the
project. With well-commented Blueprints, the finished code becomes more maintainable
and accessible, fostering better communication within the development team.

Figure 1 Blueprints Example from UE4 docs

By using Blueprints, developers can leverage the advantages of a visual scripting system
that accelerates the development process while maintaining a high degree of flexibility.
This system allows for easy modification or swapping out of certain parts of the code,
ensuring a more adaptable and efficient development workflow. The intuitive nature of
Blueprints not only enhances the overall development experience but also empowers
developers to create a robust and polished end product.

To use Blueprints, open the Unreal Engine 4 editor and create a new Blueprint Class,
selecting the appropriate parent class for your desired functionality. Once created,
double-click the Blueprint to open the Blueprint Editor. Inside the editor, you can add
nodes by right-clicking on the graph, searching for the desired function or variable, and
selecting it from the list. Connect nodes by dragging wires from output pins to input
pins, creating a flow of data and execution. Compile and save the Blueprint to apply the
changes and see them reflected in your project.

P a g e | 4

The structure of the project is divided in folders as follows:

- Art/

- Core/

- Data/

- Gameplay/

- Interface/

- MainMenu/

- Misc/

- Levels/

The project structure is organized into folders for easy navigation and better
collaboration. You'll find materials, 3D models, and related assets in the Art/ folder.
Save-related logic is located in Core/Data/, while the main building blocks of the
project, like Actors, Components, Pawns, and Spawners, are located in
Core/Gameplay/. User interface elements displayed during application use can be
found in Core/Interface/, and main menu logic is managed within Core/Mainmenu/.
Core/Misc/ holds a variety of elements, including buttons and miscellaneous text
elements. Lastly, the Levels/ folder contains the actual levels you'll experience in the
application.

Apart from the main OpeyeIIContent/ folder we have added iExpressIIContent/,
StarterContent/ and TS_PostProcess/ folders to prevent having to refactor the
code in case any plugin used in the projects changes their code structure.

Eye Tracking

 Eye tracking is primarily handled inside Core/Gameplay/Pawn/EyeTracker_Ctr.
After some variables have been set when starting the application - the “Event Tick” takes
over. To prevent overly stressing the host, an evaluation frequency can be adjusted so
that the gaze estimation is only executed every x millisecond.

The function Get Gaze Origin and Direction gets used to trace a line between the user
and the location where they are looking at in word coordinates. If this line hits an object,
it gets communicated to the 3DTraveler Actor to evaluate the next action.

In a first step Get Gaze Origin and Direction detects which eye tracker should be used. If
Tobii is not available, it will alternatively try to find a running OpenGaze API server. If no
devices are detected at all, the function will use the mouse coordinates as a fallback
option. This is especially helpful when debugging or simply when trying to demo the
capabilities of the application without having to set up the full testing environment.

 5 | P a g e

Tobii Integration

When using the Tobii Eyetracking plugin with Unreal Engine 4, we can seamlessly
integrate eye-tracking data into our project via Blueprints. We can access Tobii's eye-
tracking functionality directly within UE4's Blueprint system. To begin, we create a new
Blueprint or open an existing one. Inside the Blueprint Editor, we can access various
Tobii-specific Blueprint nodes, such as “Get Gaze Data” or ”Get Combined Gaze Data”.
These nodes allow us to retrieve eye gaze information, such as gaze direction, gaze
origin, or focus object. If Tobii is detected these are used in the Eyetracker_Ctr and
exported using the return node.

P a g e | 6

OpenGaze API

Compared to the finalized Tobii integration, the interaction with the OpenGaze API is
more low-level. When working with the OpenGaze API to collect eye gaze data, we start
by establishing a connection with the eye-tracking server. To do this, we create a TCP
socket and connect it to the server's IP address, which is usually 127.0.0.1, and the
port number, which is typically 4242.

Once connected to the server, we need to send specific XML commands to request eye
gaze data. For example, we can send the command <SET ID="ENABLE_SEND_DATA"
STATE="1" /> to start receiving gaze data. If we want to receive data at a specific
frequency, we can use the command <SET ID="SAMPLE_RATE" VALUE="120" />,
which sets the sample rate to 120Hz. To define the data fields we wish to receive, we can
use the command <SET ID="ENABLE_SEND_PUPILSIZE" STATE="1" />, which
includes pupil size data in the stream. The full list of supported commands can be viewed
here: https://www.gazept.com/dl/Gazepoint_API_v2.0.pdf

As the server starts sending gaze data, our application should listen for incoming XML
strings on the TCP socket. Each string contains a single gaze data sample with the
requested data fields. We can then parse these strings to extract relevant information
such as gaze coordinates, pupil diameter, or eye movement events.

In UE4 we defined the Send Message function to send commands to the server. The
messages need to be carefully crafted since the last two characters have to be “\r\n”
namely carriage return (CR) and line-feed (LF) otherwise the OpenGazeAPI will ignore
this message. It is important that these characters are not escaped before being sent to
the server. The main issue with this was that most TCP socket plugins from the UE
Marketplace were not able to craft such messages. They either added extraneous
characters and/or escaped or trimmed the white-space characters that needed to be
sent.

TCP Socket was the only free plugin with which we were able to communicate with the
server. In the blueprints we added the white-space characters using the append node in
which A contained the XML-command and the command delimiter (\r\n) in B was
pasted from a text editor.

https://www.gazept.com/dl/Gazepoint_API_v2.0.pdf

 7 | P a g e

With the proper message composed and sent to the server, the server will straight away
answer with the gaze data. This data gets parsed using the Parse Message function.
Since the responses are also written in XML we used the EasyXML Parser plugin to extract
the relevant variables. The typical reply from the server is composed as follows
(depending on the initial commands send to the server):

<REC BPOGX="0.38244" BPOGY="1.38776" BPOGV="0" />

Depending on the initial commands sent to the server the XML-attributes may change.
In this case BPOGX and BPOGY tell us the best point of gaze data - which is the average
of the left eye and right eye. If not it will send the best of either the left or right eye,
depending on which one is valid. BPOGV tells us whether the values are valid or whether
they should be ignored.

Finally, we interpolate X and Y to prevent major jittering and save and expose the values
that we received. Back inside the EyeTracker_Ctr we multiply the values with the
viewport size and convert the screen-location to world space.

P a g e | 8

Levels

The various levels have very level dependent logics. Those are easier explored by
downloading the project and investigating the associated blueprint files. To get a
general overview of all the levels implemented in the application, check the user
documentation.

Generally, it can be stated that all _Lv level files are located in Levels/. The various
blueprints, pawns and actors are placed inside the level and will execute the actions
defined in their blueprints when the level is started. By default, the blueprints that are
used in the level can be found in the top right corner of the Editor window. The blue “Edit
…” link can be used to jump straight to the blueprint. Alternatively, they can be found in
Core/Gameplay/, inside their respective folders. Most of the level specific logic can be
explored in the Core/Gameplay/Spawners/ subfolder.

 9 | P a g e

P a g e | 10

Settings

User and system settings are stored separately. Their interface and respective values
being saved can be found in Core/Data.

All the calibration related settings, whether to track left, right or both pupils and other
settings which might be helpful for people with MDVI can be set via the eye trackers’
application - i.e. Tobii Experience and GazePoint Control. Details on this can be found in
the user documentation.

Testing and Debugging

It's crucial to test and debug the application throughout the development process.
Unreal Engine 4 provides tools and features to assist with debugging and profiling,
allowing developers to identify and fix issues quickly and efficiently.

1. Unreal Engine Debugger: The built-in debugger in Unreal Engine 4 enables
developers to step through Blueprints and examine variables during execution.
This allows for close examination of how the code works, and helps to identify
any logic errors or unexpected behaviors.

2. Unreal Engine Profiler: The profiler is a tool that helps developers measure
performance and identify performance bottlenecks. It provides a detailed
breakdown of the time spent on various tasks, such as rendering, physics, and

 11 | P a g e

Blueprint execution. By examining the results, developers can optimize the
application and improve its performance.

3. Debugging Eye Tracking: To debug eye tracking within the application, you can
use the built-in Print String node in Blueprints to print the gaze data to the
screen or log. This can help you visualize the eye tracking data in real-time and
identify any issues or inconsistencies.

4. Debugging OpenGaze API: For debugging the communication with the
OpenGaze API, you can use the Print String node in Blueprints to print the
received XML strings, parsed values, or any other relevant information to the
screen or log. This will help you identify any issues in the communication
process and ensure that the data is being parsed and used correctly. More
importantly tools like WireShark can help you snoop the traffic between the
application and the API to detect potential issues and get a clearer insight into
the messages being sent. Set the filter to ip.dst === 127.0.0.1 &&
(tcp.dstport === 4242 || tcp.srcport === 4242) to only view the
relevant traffic.

Apart from these tools it is important to keep in mind that the eye tracker that is being
used to test should be well calibrated. To simplify the testing and debugging process we
implemented fallback support for the mouse as input device. Mouse input will be used
when no supported eye tracker is detected.

P a g e | 12

Deployment

Once the development and testing process is complete, it's time to deploy the
application. Although Unreal Engine 4 offers a variety of deployment options, including
Windows, Mac, Linux, console platforms, and more, we only confirmed that the eye
trackers work with Windows. To deploy the OPEYE 2 application, follow these steps:

1. In the Unreal Editor, select "File" from the top menu, and then choose
"Package Project."

2. Choose the target platform you wish to deploy to (e.g., Windows, Mac, Linux).
3. Select the output directory for the packaged project.
4. The packaging process will begin, and once completed, you will find the

executable and necessary files in the specified output directory.
After deployment, the OPEYE 2 application is ready to be distributed and used by end-
users. Users will need to have the necessary eye-tracking hardware and software set up
and calibrated for the application to function correctly - details on this can be found in
the user documentation.

 13 | P a g e

Conclusion
This technical documentation has provided an overview of the OPEYE 2 project, including
its setup, software architecture, eye-tracking implementation, and deployment process.
Developers should now have a clear understanding of the structure and functionality of
the project, as well as the methods and technologies utilized throughout its
development.

With this knowledge, developers should be well-equipped to extend the project by
implementing support for additional eye-tracking devices. To do so, they can study the
existing integration of Tobii EyeTracker SDK and OpenGaze API, and follow similar
patterns to incorporate other eye-tracking solutions into the project.

Furthermore, developers should have a firm grasp on how to create and add new levels
to the OPEYE 2 application. By examining the existing levels and their associated
Blueprint files, they can design and develop new levels with unique functionality,
enabling the continued expansion and improvement of the application.

In summary, this documentation aims to equip developers with the necessary
understanding of the OPEYE 2 project to facilitate future development, expansion, and
maintenance.

